The Potential of Theralase Anti-Cancer Therapy

The Potential of Theralase Anti-Cancer Therapy

Theralase’s® lead PDC, TLD-1433, is an exciting new drug candidate for the treatment for NMIBC and has been proven to be safe and effective in early clinical studies in the destruction of NMIBC. TLD-1433 has shown early promise for various cancers in pre-clinical investigations such as: Glio Blastoma Multiforme (“GBM”), a deadly form of brain cancer and Non-Small Cell Lung Cancer (“NSCLC”), the leading cause of cancer death.

The principal focus of Theralase® is oncology through a robust pipeline utilizing the lead PDC, TLD-1433, and associated drug formulations.

Once the majority of the planned 20 clinical study sites are launched for the pivotal Phase II NMIBC clinical study (“Study II”), Theralase® plans to commence a new human clinical study and is currently researching and developing the next cancer indications using Rutherrin®, a proprietary formulation of the lead PDC TLD-1433 combined with transferrin.

Discovery Preclinical Phase I Phase II Phase III
TLD-1433 (Intravesical Photodynamic Therapy Platform Technology) - Non-muscle Invasive Bladder Cancer (NMIBC)
Pivotal Phase II Clinical Study
Rutherrin ® (Enhanced Radiation Therapy Platform Technology or Technology for Innovation in Radiation Oncology) – Glioblastoma Multiforme (GBM)
Late Preclinical Stage
Rutherrin ® (Enhanced Radiation Therapy Platform Technology or Technology for Innovation in Radiation Oncology) – Non-Small Cells Lung Cancer (NSCLC)
Late Preclinical Stage
RuVaCare(V)® (Anti-Pathogen Platform Technology)- SARS - CoV-2 - COVID-19
Preclinical Stage

Non-Muscle Invasive Bladder Cancer ("NMIBC")

In 2019, an estimated 80,470 adults (61,700 men and 18,770 women) were diagnosed with bladder cancer in the United States.

Among men, bladder cancer is the fourth most common cancer.

It is estimated that 17,670 deaths (12,870 men and 4,800 women) from this disease will occur in 2019.

Among men, bladder cancer is the eighth most common cause of cancer death.1 

The bladder cancer market is expected to triple in size to around $1.1 billion in 2025.2

 Theralase®is currently evaluating the lead PDC, TLD-1433 in a pivotal clinical study, Study II.

NMIBC is an urgent and highly unmet medical need; therefore, Theralase should not be required to conduct a Phase III clinical study, if successful, only Phase IV post-approval monitoring.

If Theralase can demonstrate strong safety and efficacy results in Study II, similar to Study I,  the data analysis should support an application for market commercialization and become the next gold standard treatment for patients diagnosed with NMIBC.

A list of select scientific publications that give a robust overview of the effects of TLD-1433 and Rutherrin® seen in pre-clinical and clinical models is provided in our Research area.

Research Publications


GlioBlastoma Multiforme ("GBM")

There are an estimated 24,000 new cases of malignant gliomas diagnosed in the US annually, with more than 14,000 deaths.

In the majority of cases, they recur following initial treatment, especially for GBM, the most common and lethal form of brain cancer.

Most patients do not survive beyond 2 years, post diagnosis.3

TLD-1433 continues to advance preclinically and clinically in the destruction of new oncology targets.

In preclinical trials, TLD-1433, when activated by radiation therapy has been demonstrated to be effective in the destruction of human GBM cancer cells.

In a 2017, Company news release, Dr. Pavel Kaspler, PhD, Theralase Research Scientist stated that, “Radiation therapy followed by NIR laser light activation of TLD-1433 is a new and unexpected discovery by the members of our research team under the leadership of Dr. Arkady Mandel and Dr. Lothar Lilge. This discovery has far reaching implications, including: targeting cancers that are difficult, if not impossible to reach with conventional laser light sources, such as GBM brain tumours or deep tissue related cancers.”

Advantages of TLD-1433:

  1. Stable under radiation activation and remains able to produce ROS via subsequent NIR laser light activation
  2. Able to be activated by radiationeliciting a PDT-like cell kill
  3. Able to be dually activated (radiationfollowed by NIR laser) delivering a cell kill greater than the two technologies applied separately
  4. Able to destroy cancer cells predominantly via necrosis at 24 hours post treatment.
  5. Able to deliver noticeable damage to tumors when radiationactivated
  6. Able to deliver significant tumour damage when dually activated (radiationfollowed by NIR laser) in the presence of transferrin

A list of select scientific publications that give a robust overview of the effects of TLD-1433 and Rutherrin® seen in preclinical and clinical models is provided in our Research area.

Research Publications

About Non-Small Cell Lung Cancer ("NSCLC")

Lung cancer is by far the leading cause of cancer death among both men and women.

Out of all types of lung cancer, NSCLC accounts for 80 to 85% of cases.4

The American Cancer Society’s estimates for lung cancer in the United States for 2020 are:

  • About 228,820 new cases of lung cancer (116,300 in men and 112,520 in women)
  • About 135,720 deaths from lung cancer (72,500 in men and 63,220 in women)5

Each type of NSCLC has different kinds of cancer cells. The cancer cells of each type grow and spread in different ways. The types of NSCLC are named for the kinds of cells found in the cancer and how the cells look under a microscope:

  1. Squamous cell carcinoma:Cancer that begins in squamous cells, which are thin, flat cells that look like fish scales, also called epidermoid carcinoma.
  2. Large cell carcinoma: Cancer that may begin in several types of large cells.
  3. Adenocarcinoma:Cancer that begins in the cells that line the alveoli and produce substances such as mucus.

In preclinical experimentation by Theralase®, an evaluation of the Transferrin Receptors (“TfRs”) by flow cytometry analysis in three human cancer cell lines; specifically: H2170 (lung squamous cell carcinoma), H460 (large cell lung cancer carcinoma) and A549 (lung adeno carcinoma) showed almost 100% of lung cancer cells express TfRs.

The preclinical in-vitro and in-vivo data demonstrates that Rutherrin® based therapy may be highly effective in the selective destruction of lung cancer tumours, with no impact to healthy tissue.

A list of scientific publications that give an overview of the effects of TLD-1433 and Rutherrin® seen in pre-clinical and clinical models is provided in our Research area.

Research publications


Additional Virus Targets - SARS - CoV-2 - COVID-19

Theralase® executed a Sponsored Research Agreement (“SRA”) with the University of Manitoba (“UM”) Medical Microbiology department in 3Q2020 to commence development of a coronavirus vaccine utilizing Theralase’s patented and proprietary PDCs. According to the SRA, UM will conduct experiments in conjunction with Theralase® for the research and development of a coronavirus vaccine to be further evaluated at additional research centers in animal models, and if proven successful in human clinical studies as early as 2021.

The primary objective of the SRA is to investigate the efficacy of Theralase’s lead PDC to destroy a variety of viruses; including: H1N1 Influenza, Zika and coronaviruses (Biological Safety Level (“BSL”) 2). The secondary objective is to optimize the concentration of PDC required, the activation methodology and how to potentially administer the treatment to humans to be used as a vaccine (prevention of a patient from contracting COVID-19) (BSL-3). The research is primarily directed to in-vitro (cell lines) analysis, but based on these initial experiments, Theralase® plans to expand the work, in conjunction with Dr. Coombs, to in-vivo (small animal) analysis, toxicology (optimized doses for human delivery), at additional research centers, and if proven successful preclinically in human clinical testing through Phase I (safety), Phase II (efficacy) and Phase III (efficacy in a larger population) clinical studies. If successful through a Phase III clinical study, and with the successful regulatory approval of Health Canada, the technology could be commercialized across Canada for the benefit of all Canadians.

Research Publications


Cancer Facts and Figures 2019. American Cancer Society. Accessed January 14, 2019.

Bladder cancer market size to more than triple to over $1.1 billion by 2025. (2017). Retrieved 14 August 2019, from

3 Foreman, P.M., Friedman, G.K., Cassady, K.A. et al. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics 14, 333–344 (2017).

4 Bareschino, M. A., Schettino, C., Rossi, A., Maione, P., Sacco, P. C., Zeppa, R., & Gridelli, C. (2011). Treatment of advanced non small cell lung cancer. Journal of thoracic disease, 3(2), 122–133.

Theralase® newsletter

Let's Stay in Touch

Sign up to our newsletter to stay informed on news and updates from Theralase Technologies Inc.